SYMPOSIUM POTABLE REUSE

AUSTIN, TEXAS | JANUARY 22-23, 2018

The limitations of common molecular techniques for water reuse microbiology

Rose Kantor, Ph.D., Scott Miller, Lauren Kennedy, and Prof. Kara Nelson University of California, Berkeley

American Water Works Association

Talk outline

- 1. Motivation: why do we care about bacteria?
- 2. Methods: what tools are available?
- 3. Amplicon sequencing: the juicy details
- 4. Results from sequencing at advanced treatment pilot
- 5. Complementary methods

Motivation: potable reuse microbiology

Motivation: potable reuse microbiology

- What types of microorganisms are present and in what quantities?
- Where might the bacteria come from? (source tracking)

Non-molecular methods

Non-molecular methods

- Total coliforms
- Heterotrophic plate count
- ATP
- Flow cytometry

Non-molecular methods

- Total coliforms
- Heterotrophic plate count
- ATP
- Flow cytometry

Molecular methods

- PCR and qPCR
- 16S rRNA gene amplicon sequencing
- Metagenomics (shotgun sequencing)

Molecular methods

Targeted quantification Low quantities of DNA

- 16S rRNA gene amplicon sequencing
- Metagenomics (shotgun sequencing)

Molecular methods

Targeted quantification Low quantities of DNA

Broad identification
Low quantities of DNA

PCR and qPCR

16S rRNA gene amplicon sequencing

Metagenomics (shotgun sequencing)

Molecular methods

Targeted quantification
Low quantities of DNA

Broad identificationLow quantities of DNA

Broadest identification
Higher quantities of DNA

PCR and qPCR

16S rRNA gene amplicon sequencing

Metagenomics (shotgun sequencing)

Molecular methods

Targeted quantification Low quantities of DNA

Broad identificationLow quantities of DNA

Broadest identification
Higher quantities of DNA

PCR and qPCR

16S rRNA gene amplicon sequencing

Metagenomics (shotgun sequencing)

Amplicon sequencing is like bug collecting

Amplicon sequencing is like bug collecting

Amplicon sequencing is like bug collecting

DNA sequences can be used for identification

Amplicon sequencing is based on ribosomal RNA genes

Amplicon sequencing process

16S rRNA genes show relatedness of bacteria

Identification via amplicon sequencing

Amplicon seq. on El Paso DPR treatment train

Results: amplicon seq. across treatment train

Unique sequences

Influent samples

Results: amplicon seq. across treatment train

Unique sequences

Microfiltration effluent

Samples

Results: amplicon seq. across treatment train

Unique sequences

Nanofiltration / RO effluent

Results: amplicon seq. across treatment train

GAC filter effluent

Results: microbial community changes during treatment

Limitation 1: Relative vs. Absolute Abundance

Absolute quantification

Cell counts via flow cytometry

Location

Limitation 2: Specificity

Most data analysis programs don't determine to species-level

• 16S amplicon sequencing is usually too short to distinguish strains

Recommend qPCR (specific for pathogen)

Legionella (all species): relative abundance

Legionella (all species): absolute abundance

Motivation: potable reuse microbiology

- What types of microorganisms are present and in what quantities?
 - Predominant bacteria change across treatment train

Motivation: potable reuse microbiology

- Where might the bacteria come from? (source tracking)
 - They may start out in place, not sourced from upstream
 - They may start out too rare to detect and then survive treatment and grow

Molecular methods with highly purified water: Controls matter

 Want high signal:noise ratio to prevent contamination

- Negative / blank
- Positive / DNA from known microorganisms

Take-home messages

- Amplicon sequencing: insight into patterns within a system
- Controls are critical
- Can't detect pathogens with specificity (use qPCR)
- Should also include an absolute measure of biomass and viability or growth assays
- For functional analyses, should use metagenomics

Costs

- Amplicon sequencing: \$5-17 per sample (other groups' estimates)
 - For highly purified water, allow 25-50% repeat rate (or filter extensively)
 - We estimated \$18 per sample
 - Sequenced in batches of 96 or 384, depending on desired detection limit
 - Include controls in budget
 - Consider triplicate runs per sample
- qPCR: ~\$2 per reaction, but also need calibration curve & controls
 - One assay per pathogen/ARG/other gene of interest