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Metagenomics + water engineering
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Background: potable reuse
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Drinking water
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https://watereuse.org/educate/water-reuse-101/global-connections/

What factors are driving the current push for potable reuse?
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https://watereuse.org/educate/water-reuse-101/global-connections/


Why are we 
studying DPR 
in the Nelson 
Lab?
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To understand how treatment processes 
affect microbial water quality

To learn what may happen when direct 
potable reuse water enters a US distribution 

system

Because California regulations for advanced 
treatment focus on viruses and protozoans 

but not bacteria, so they haven’t been as well 
studied
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Study questions
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1. How well does advanced 
treatment remove 

bacteria?

2. How does the bacterial 
community change during 

treatment?

3. Are the same bacteria 
present before and after 

treatment?

4. What are the bacteria 
capable of doing?



Study design and methods
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Methods for 
studying 
microbial 
water quality

15

Flow cytometry (total and intact cell counts)

ATP concentration (intracellular and total)

amplicon sequencing (16S rRNA gene V4)

Metagenomics (whole community DNA sequencing)

qPCR (antibiotic resistance genes and pathogens)
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1. How well does advanced treatment remove bacteria?
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1. Treatment removes nearly all bacteria but there is 
growth after treatment
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2. How does the bacterial community change during 
treatment?
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• Dead-end ultrafiltration
• Filter back-flush
• PEG flocculation
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2. 16S rRNA gene amplicon sequencing
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2. 16S rRNA gene amplicon sequencing
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2. 16S rRNA gene amplicon sequencing
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2. 16S rRNA gene amplicon sequencing
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2. 16S rRNA gene amplicon sequencing



Sampling DNA extraction Amplification

Sequencing Computational
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Jupyter notebook with R kernel:
• DADA2
• DESeq2 (decontamination)
• Phyloseq
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2. 16S rRNA gene amplicon sequencing
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2. Community composition changes through treatment

Kantor et al. (unpublished).
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2. Core community 
composition 

changes through 
treatment
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3. Are the same bacteria present before and after treatment?
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3. Are the same bacteria present before and after treatment?
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Site A core community overlaps

3. Are the same bacteria present before and after treatment?
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4. What are the metabolic traits of bacteria found in the 
treatment train?



Sampling DNA extraction Illumina 
sequencing

Assembly Binning Genome curation

1. 2. 3.

4. 5. 6.
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(HiSeq/NovaSeq
150 bp paired-
end)

Annotation and
metabolic prediction

4. Genome-resolved metagenomics



4. Genome-resolved metagenomics

Sampling DNA extraction Illumina 
sequencing

Assembly Binning Genome curation

1. 2. 3.
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Information 
gained from 
genome-
resolved 
metagenomics 
(El Paso)

Kantor et al. (2019). Front. Micro.
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Information 
gained from 
genome-
resolved 
metagenomics
(El Paso)

Kantor et al. (2019). Front. Micro.
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Information 
gained from 
genome-
resolved 
metagenomics
(El Paso)

Kantor et al. (2019). Front. Micro.
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Information 
gained from 
genome-
resolved 
metagenomics
(El Paso)

Kantor et al. (2019). Front. Micro.



Conclusions
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1. Bacteria are nearly 
completely removed by 

treatment, growth afterward

2. Community composition 
changes with each treatment 

process
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3. Different bacteria are 
present before and after 

treatment

4. Growth rates, antibiotic 
resistance, C1-carbon 

metabolism
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